Jasmonate signalling drives time‐of‐day differences in susceptibility of Arabidopsis to the fungal pathogen Botrytis cinerea

نویسندگان

  • Robert A. Ingle
  • Claire Stoker
  • Wendy Stone
  • Nicolette Adams
  • Rob Smith
  • Murray Grant
  • Isabelle Carré
  • Laura C. Roden
  • Katherine J. Denby
چکیده

The circadian clock, an internal time-keeping mechanism, allows plants to anticipate regular changes in the environment, such as light and dark, and biotic challenges such as pathogens and herbivores. Here, we demonstrate that the plant circadian clock influences susceptibility to the necrotrophic fungal pathogen, Botrytis cinerea. Arabidopsis plants show differential susceptibility to B. cinerea depending on the time of day of inoculation. Decreased susceptibility after inoculation at dawn compared with night persists under constant light conditions and is disrupted in dysfunctional clock mutants, demonstrating the role of the plant clock in driving time-of-day susceptibility to B. cinerea. The decreased susceptibility to B. cinerea following inoculation at subjective dawn was associated with faster transcriptional reprogramming of the defence response with gating of infection-responsive genes apparent. Direct target genes of core clock regulators were enriched among the transcription factors that responded more rapidly to infection at subjective dawn than subjective night, suggesting an influence of the clock on the defence-signalling network. In addition, jasmonate signalling plays a crucial role in the rhythmic susceptibility of Arabidopsis to B. cinerea with the enhanced susceptibility to this pathogen at subjective night lost in a jaz6 mutant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deficiencies in Jasmonate-Mediated Plant Defense Reveal Quantitative Variation in Botrytis cinerea Pathogenesis

Despite the described central role of jasmonate signaling in plant defense against necrotrophic pathogens, the existence of intraspecific variation in pathogen capacity to activate or evade plant jasmonate-mediated defenses is rarely considered. Experimental infection of jasmonate-deficient and jasmonate-insensitive Arabidopsis thaliana with diverse isolates of the necrotrophic fungal pathogen ...

متن کامل

Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3.

Oligogalacturonides (OGs) released from plant cell walls by pathogen polygalacturonases induce a variety of host defense responses. Here we show that in Arabidopsis (Arabidopsis thaliana), OGs increase resistance to the necrotrophic fungal pathogen Botrytis cinerea independently of jasmonate (JA)-, salicylic acid (SA)-, and ethylene (ET)-mediated signaling. Microarray analysis showed that about...

متن کامل

Identification of Arabidopsis accession with resistance to Botrytis cinerea by natural variation analysis, and characterization of the resistance response

Botrytis cinerea is a ubiquitous necrotrophic fungal pathogen that infects over 200 different plant species. We have analyzed 17 Arabidopsis ecotypes for natural variations in their susceptibility to B. cinerea, and found compatible and incompatible Arabidopsis–Botrytis interactions. We determined that Arabidopsis ecotype Ler is resistant to 5 B. cinerea isolates used in this study. To further ...

متن کامل

Arabidopsis VQ motif-containing proteins VQ12 and VQ29 negatively modulate basal defense against Botrytis cinerea

Arabidopsis VQ motif-containing proteins have recently been demonstrated to interact with several WRKY transcription factors; however, their specific biological functions and the molecular mechanisms underlying their involvement in defense responses remain largely unclear. Here, we showed that two VQ genes, VQ12 and VQ29, were highly responsive to the necrotrophic fungal pathogen Botrytis ciner...

متن کامل

Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4.

Salicylic acid (SA) is an important regulator of plant defense responses, and a variety of Arabidopsis mutants impaired in resistance against bacterial and fungal pathogens show defects in SA accumulation, perception, or signal transduction. Nevertheless, the role of SA-dependent defense responses against necrotrophic fungi is currently unclear. We determined the susceptibility of a set of prev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 84  شماره 

صفحات  -

تاریخ انتشار 2015